Data Science and Machine Learning for Finance

Diving deeper in data science and the actual coding of data processing functions and machine learning algorithms with Python, this series of tutorial gives us a great taste of what can be done in finance and stock trading. Through a hands-on approach, it guides us through the programming needed to retrieve, manipulate and visualize data, and, more importantly, to extract actionable insights.

Stock price chart created with Matplotlib

Continue reading “Data Science and Machine Learning for Finance”

Guide to real Machine Learning applications

This series of articles dives deeper into the actual applications of Machine Learning that are currently in use in many current technological processes and devices.

Amazon Alexa

Through these posts entitled “Machine Learning is Fun!”, Adam Geitgey guides us step by step through the concepts, data, algorithms, code, results and pitfalls of machine learning applications from image, face and speech recognition to language translation and more. It also gathers several different sources for more details on each application and its development.

Image encoding

This series is really dense with detailed code, but it is also explained very clearly, step by step, with detailed illustration. It notably covers the use of a Convolutional Neural Network (including Generative Adversarial Network) and Recurrent Neural Network, together with some of their most prominent applications in daily life. It is a real course not to be missed for any ML developer!

Here is the list of posts with direct links: